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Multiple randomized clinical trials have demon-
strated that screening mammography reduces the 

mortality from breast cancer by 20%–22% (1,2). As a 
result, mammography is the cornerstone of breast can-
cer screening (3,4). In addition, mammography is the 
initial examination for many women with breast symp-
toms (5,6). In 2015, 22.6 million mammograms were 
obtained in the United States alone (7). The evaluation 
of mammograms thus demands a large number of dedi-
cated radiologists. Unfortunately, there is an increasing 
shortage of qualified readers in many countries (8). Even 
for women screened with mammography, as many as 
one in three cancers manifests as interval cancer; a large 
proportion of these cancers were, in retrospect, visible 
on the previous screening mammograms (9,10). Missed 
cancers at mammography are, therefore, one of the 
most common reasons for malpractice lawsuits in radi-
ology (11,12). The recent introduction of digital breast 

tomosynthesis (DBT), in which multiple projections of 
the breast are obtained over a limited angular range to 
reconstruct a three-dimensional data set of mammogra-
phy images (13,14), is only a partial solution. Although 
DBT depicts 30%–40% more cancers than full-field 
digital mammography (15,16), the reading time is ap-
proximately doubled (17,18) and cognitive and percep-
tion errors still occur (19). Consequently, there is a need 
for assistance with the evaluation of mammography and 
DBT, both to maximize the cancer detection rate and to 
address the workload issues.

Automated analysis (ie, artificial intelligence [AI]) 
of mammograms and DBT images may address these 
needs. Computer-aided diagnosis (CAD) for mammog-
raphy has been under development since the late 1960s 
(20). Its primary aim is to assist radiologists in iden-
tifying subtle cancers that might otherwise be missed. 
CAD programs mark focal areas of increased density 
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Conventional AI
Most available CAD systems perform, in essence, two sepa-
rate tasks. In the first task, potential lesions that stand out 
from the normal fibroglandular tissue are detected. The sec-
ond task entails the reduction in the number of false-positive 
findings. In this step, the potential lesions are classified and 
obvious false-positive findings are removed from the list of 
potential lesions. To perform this task, classic CAD systems 
depend on human-designed features. For example, masses are 
detected by using their gray level (how white it is), gradient 
(if it stands apart from its surroundings), texture (how homo-
geneous it is), and shape (if it resembles a mass) (43); micro-
calcifications are detected by actively searching for rod-like 
high-intensity pixels within the mammogram (Fig 2) (44–
46). To reduce the number of false-positive findings, candi-
date voxels are clustered into possible lesions and analyzed 
with use of additional features such as distribution, shape, 
margin, and texture (47–49). To reach a final classification 
about whether a finding should be flagged, the CAD systems 
combine the most discriminative features by using a classifier 
(eg, support vector machines, random forests), and lesions 
above a predefined threshold are subsequently marked (50).

CAD systems are classified into two groups: computer-aided 
detection systems and computer-aided diagnosis systems. Com-
puter-aided detection systems focus on the localization task (ie, 
detection of a suspicious abnormality). They serve as a second 
reader to radiologists and leave subsequent patient management 
decisions to the radiologist (51,52). Computer-aided diagnosis 
systems, however, characterize an abnormality that is identified 
by a radiologist or a computer. The computer-aided diagnosis 
system estimates an abnormality’s probability of disease and 
classifies it as benign or malignant. The radiologist then decides 
whether the abnormality warrants further evaluation and deter-
mines its clinical significance (51,52). The advances in the design 
of classifying features over the years has resulted in a substan-
tial improvement in both the sensitivity and specificity of CAD 
(51–54). The performance of the top systems reported in the 
literature approached that of humans when using feature-based 
classification, albeit only on specific tasks (eg, mass detection) in 
selected data sets (55,56).

Most conventional CAD systems present their findings in the 
form of prompts on the mammogram, which requires the radi-
ologist to decide whether the prompts represent an underlying 
malignancy. Because of the limited specificity of these systems, 
this is a challenging task. Ikeda et al (57) reported that, when us-
ing a feature-based CAD system, approximately 1000 prompts 
must be analyzed to detect one additional cancer. It is therefore 
not surprising that the use of CAD in mammography leads to 
a slightly higher detection rate (range, 1%–19%) when com-
bined with single reading, but at the cost of a lower specificity 
(incremental recall rate, 6%–36%) and longer evaluation times. 
Double reading still seems to be significantly better than single 
reading with CAD (58–65). In clinical practice, the use of CAD 
does not improve diagnostic accuracy (27,28) because the many 
false prompts lead to higher false-positive rates, recall rates, and 
biopsy rates. In addition, the use of CAD does not appear to be 

Abbreviations
AI = artificial intelligence, CAD = computer-aided diagnosis, CNN = 
convolutional neural network, DBT = digital breast tomosynthesis

Summary
Because of the advances in deep learning, the quality of artificial 
intelligence is rapidly improving for breast imaging and it will likely 
play an important role for mammography and digital breast tomo-
synthesis in all steps—from image generation and denoising to risk 
prediction, cancer detection, and, ultimately, therapy selection and 
outcome prediction.

Essentials
 n In clinical practice, the use of computer-aided diagnosis (CAD) 

does not improve diagnostic accuracy because the many false 
prompts lead to higher false-positive rates, recall rates, and biopsy 
rates.

 n Neural networks are capable of learning intermediate, more 
abstract, representations of the data before classifying the entire 
image.

 n The difference in the appearance of the normal breast parenchyma 
with digital breast tomosynthesis images obtained with machines 
from different vendors is much greater than that with full-field 
digital mammography; this is an important consideration when 
training deep learning models.

 n Previous mammograms and images obtained with different imag-
ing modalities can be exploited to improve the quality of predic-
tion of neural networks.

 n The performance of deep learning–based systems is better than 
that of classic CAD systems based on manually crafted features, 
approaching that of radiologists for specific tasks.

and microcalcifications. The first CAD software for screening 
mammography received U.S. Food and Drug Administration 
approval in 1998 (21). Early results were promising (22–25), 
and CAD has been widely adopted into clinical practice—
with approximately 92% of all mammography facilities in the 
United States using this technology by 2016 (26). However, 
its clinical value is uncertain (27,28), mainly due to the large 
number of false-positive findings.

The success of deep convolutional neural networks (CNNs) 
in the 2012 ImageNet Large Scale Visual Recognition Chal-
lenge (29) triggered new interest in the development of better 
automated image analysis methods. In the past few years, similar 
deep neural networks were shown to be highly effective in tasks 
ranging from face recognition to self-driving cars (30–33). Re-
cent studies have shown that CNNs can also be highly successful 
in various tasks in the health care industry, ranging from retina 
analysis to digital pathology (34–36), and in multiple applica-
tions in radiology (37–39). Several excellent reviews have been 
published on the general use of AI in these fields (40–42). Figure 
1 illustrates the hierarchy of terms used in AI, as they are not 
completely interchangeable. It is foreseeable that deep learning 
will also lead to a major change in the automated analysis of im-
ages from mammography and DBT. In this review, we discuss 
the potential of deep learning techniques for mammography and 
DBT. In addition, we discuss the current technical approaches to 
improve on the available CAD systems for mammography and 
the potential use of these techniques in clinical practice.



Artificial Intelligence for Mammography and Digital Breast Tomosynthesis

248 radiology.rsna.org  n  Radiology: Volume 293: Number 2—November 2019

classifying the entire image (68). CNNs only combine infor-
mation from voxels that are spatially close to each other and 
are therefore especially suited for image evaluation. This is key 
to understanding why neural networks work so well for im-
age analysis in comparison to other methods. A more in-depth 
explanation of the functioning of neural networks and, in par-
ticular, CNNs can be found in Appendix E1 (online).

How Deep Learning Works in Mammography
Deep learning models appear to be successful in evaluating 
mammograms. In the Digital Mammography Dialogue for 
Reverse Engineering Assessments and Methods, or DREAM, 
Challenge, held between November 2016 and May 2017, 
many teams competed in developing machine learning mod-
els to classify screening mammograms according to whether 
cancer was present. Every team used the same data set, which 
consisted of 640 000 images from more than 86 000 women. 
The most successful teams used deep learning models (69,70), 
achieving a sensitivity of up to 87%. This is on par with the 
88% sensitivity achieved by radiologists with the same data set. 
However, only the leaderboard teams achieved a specificity of 
82%, a performance that approaches the specificity of the ra-
diologists in the Breast Cancer Surveillance Consortium. The 
overwhelming majority of deep learning models developed in 
this challenge were based on relatively simple variations of the 
CNNs described earlier. A basic way of classifying the various 
models is according to whether they are trained by using only 
the examination-level labels (indicating whether the patient 
under examination has cancer) or both examination-level la-
bels and pixel-level labels (annotations of malignant or benign 
lesions). The models trained with only examination-level labels 
are trainable end to end, whereas the models trained with both 
examination-level and pixel-level labels need a more complex 
training procedure.

cost-effective (66). Several studies concluded that CAD applica-
tions require substantial improvement to really be beneficial for 
patient care. Table 1 summarizes most of the literature on the 
implementation of CAD into the clinical workflow.

Why Deep Learning?
AI, powered by the recent advances in machine learning, may 
make CAD for mammography more valuable in clinical prac-
tice. The most promising of these advances is deep learning—a 
family of machine learning methods focusing on developing 
multilayered neural networks (67,68). Like conventional CAD 
systems, neural networks are mostly trained by using super-
vised learning, in which every training example comes with an 
expected output. Logistic regression, decisions trees, and sup-
port vector machines, which are used for conventional CAD, 
are examples of supervised learning models not based on neural 
networks. However, what these methods have in common is 
that, although the decision process they use to arrive at the clas-
sification decision might be very complex, they do not learn 
any intermediate representations of the data. That implies that 
these methods can only work well if the input features they 
are presented with are very predictive to begin with. However, 
as apparent from the false-positive findings in conventional 
CAD, in mammographic evaluation it is very difficult to de-
sign features on the level of the input pixels that would allow 
the classifier to accurately predict the label for the entire image. 
Neural networks, on the other hand, are capable of learning 
intermediate, more abstract, representations of the data before 

Figure 1: Diagram illustrates the relationship 
between artificial intelligence (AI), machine learn-
ing (ML), neural networks (NN), deep learning 
(DL), and convolutional neural networks (CNN). 
AI is the most general of these terms, as it includes 
systems that aim to mimic human intelligence 
by learning from data (machine learning) and 
by applying manually defined decision rules. 
Machine learning includes neural networks but 
also pertains to many other methods, such as 
kernel methods (eg, support vector machines) 
and decision tree–based methods. Among neural 
networks, deep learning, which involves study 
of neural networks consisting of many layers, is 
currently the most successful in practical applica-
tions and the subject of the most intense research. 
Finally, the type of deep neural networks most 
frequently applied in medical image analysis are 
the convolutional neural networks.

Figure 2: Left, mediolateral oblique view from screening mammogram in 
54-year-old asymptomatic woman. A computer-aided diagnosis (CAD) prompt is 
present (arrowhead). Right, magnification view of area of interest. The CAD system 
identified a small group of calcifications (arrow), which were sampled for biopsy 
and yielded grade 2 ductal carcinoma in situ.
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Consequently, separate CNNs are often trained for both lesion 
types and the outcomes are only combined in the final output 
of the AI support system. Furthermore, algorithms must be 
consistent and reproducible over mammograms obtained by 
different technologists using mammography machines from 
various vendors. Validation of the deep learning algorithms 
across different vendors is substantial because all vendors use 
their own proprietary postprocessing data to make the mam-
mograms ready for presentation, and the raw data are usually 
not stored. This has a large influence on image appearance and 
implies that a CNN trained on mammograms obtained with a 
machine from one vendor may not be applicable to mammo-
grams obtained with a machine from another vendor (Fig 3) 
(76,77). Consequently, normalization of mammograms is an 
important task that must be carried out with machine learning 
techniques.

Most efforts in deep learning focused on applying existing 
techniques to mammography rather than proposing new ones 
specifically suited to the domain. Medical images have proper-
ties that make them very different from images from natural 
scenes (eg, images of a tree or dog) that are not synthetic or ar-
tificial (70). For example, although the objects of interest that 

Models trained with examination-level labels are usually the 
most similar to the standard deep CNNs (71–73). They are 
sometimes modified by taking into account multiple mammo-
graphic views simultaneously (71,72) or by adding a multiple-
instance layer (73). On the other hand, models that also use 
pixel-level labels are trained as two separate models in different 
variations (70,74). Some of these models are also fine-tuned end 
to end after the two-stage training (74). Models that learn from 
both examination-level and pixel-level labels generally exhibit 
higher performance and/or require fewer cases because they 
learn from a more detailed supervision. However, the data col-
lection is much more laborious, and performance is dependent 
on the quality of the annotations—which is a difficult problem 
as there is no real ground truth and interreader variability is sub-
stantial (75).

Technical Challenges Unique to Mammography
Not all deep learning algorithms have equal performance. 
Fine-tuning algorithms to specific tasks in mammography and 
DBT requires more effort than just the use of a very general 
CNN on a large data set. For one, it is difficult to train a CNN 
that is good in the detection of both masses and calcifications. 

Table 1: Summary of Landmark Decisions or Studies on CAD

Landmark and Year Reference Key Findings
First studies on automated analysis of mammograms, 

1967
Winsberg et al (20) Density within scanned mammograms could 

be automatically characterized
U.S. FDA approval for a CAD application (R2 Image 

Checker; Hologic, Marlborough, Mass) to detect 
cancers, 1998

U.S. FDA premarket approval  
database (21)

A computer system could identify and mark 
regions of interest on routine screening 
mammograms

Studies showing that CAD may detect cancers missed  
by radiologists

 2000 Warren Burhenne et al (22) CAD could reduce the false-negative rate by 
77% without increasing the recall rate

 2001 Freer and Ulissey (23) CAD led to a 19.5% increase in the number of 
cancers detected

 2001 Birdwell et al (24) CAD marked 77% of cancers missed at screen-
ing mammography

Studies showing potential for CAD as an independent 
second reader of screening mammograms

 2004 Destounis et al (25) CAD could potentially decrease the false- 
negative rate at double reading by 39%

 2008 Gilbert et al (65) Single reading with CAD has equal sensitivity  
at slightly higher recall (3.9% vs 3.4%) 
compared with double reading

Studies showing that the large amount of  
false-positive findings generated by classic  
CAD may have a negative impact on radiologist 
performance

 2007 Fenton et al (27) Use of CAD only led to nonsignificant increase 
in sensitivity and overall lower accuracy 
(AUC = 0.87 vs 0.92; P , .01)

 2015 Lehman et al (28) Use of CAD significantly reduces sensitivity 
and is not associated with any improved 
performance parameters

Note.—AUC = area under the receiver operating characteristic curve, CAD = computer-aided diagnosis, FDA = Food and Drug Adminis-
tration.
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referred to as an attention or saliency map (Fig 4). 
Multiple powerful methods that draw attention 
to the locations in an image that contribute to the 
decision for a particular case have recently been 
proposed for natural images (78–81). Adaptation 
of these methods to mammography and DBT data 
will be technically challenging because the data are 
of much higher dimensionality than are data from 
typical natural images. However, the benefit that 
these methods could bring may extend beyond aid-
ing in interpretation. A neural network can learn 
from millions of images in a few days; this is im-
possible for radiologists. Therefore, it is conceivable 
that neural networks may eventually be used as a 
knowledge discovery tool when their ability to ex-
plain predictions improves.

Clinical Applications

Increase the Cancer Detection Rate and Reduce 
the Recall Rate
The most important task of CAD systems so far 
has been the detection of cancer on digital mam-
mograms, the quality of which has improved with 
the implementation of deep learning (69–72,82–
87); a few AI systems are now performing at the 
level of radiologists (Fig 5) (82). An open question 
is how to use this strong performance to optimize 
the current diagnostic and screening processes. 
Recently, reimbursement for the use of CAD in 
the United States was bundled into the price of 
a mammogram; thus, it is no longer possible to 
charge directly for the use of CAD. Hence, CAD 
should improve the quality and/or efficiency of 
mammography reading to be profitable. As an 
initial step, deep learning–based systems may be 
used for cancer detection in a very similar way 
to the classic CAD systems, pointing out abnor-
malities. There are two ways to implement this: 
using prompts for all findings and, in an interac-
tive setting, showing findings only when specific 
areas of the mammogram are queried. Although 
the second approach proved more effective when 
using conventional CAD (86), this poses ethical 

problems when using systems with human-like performance 
because evident cancers detected by the AI system might go 
unnoticed when the human reader does not click on the right 
spot. Consequently, hybrid systems have been proposed that 
function as a decision aid that provides interactive feedback 
and prompts for the most evident findings (Fig 3). The use of 
such an AI system increased reader performance significantly 
(82,85).

Because AI systems are much more specific than previous 
CAD systems (83,84), they may be used to reduce the recall 
rate—for example, by identifying specific mammographic fea-
tures to differentiate recalled benign images from malignant and 
negative cases (87). Recent advances with the availability of large 

determine the class usually occupy a large fraction of natural 
images, objects of interest in medical images are often relatively 
small. The standard well-known network architectures were de-
signed for the natural images and do not take these peculiari-
ties into account. Therefore, research is necessary to understand 
how these architectures can be optimized for medical images—
mammograms and DBT in particular. If enough computational 
capacity was available, this problem could be largely solved by 
using an automated neural architecture search (78).

Furthermore, to integrate deep learning into clinical practice, 
it is necessary to explain their predictions in a form understand-
able to humans. The simplest form of such an explanation points 
to the input pixels that influenced its predictions. This is often 

Figure 3: Images in 58-year-old asymptomatic woman who presented for screening mam-
mography. Arrows indicate cancer. A, Right mediolateral oblique screening mammogram shows an 
asymmetry with associated architectural distortion (arrow). B, The asymmetry (arrow) is better seen 
on the magnification view. Subsequent biopsy yielded a grade 2 invasive ductal carcinoma. C, 
Mammogram obtained 2 years earlier, with the output of an artificial intelligence (AI)–based com-
puter-aided diagnosis system (red circle; 93 represents a 93% likelihood of malignancy). Arrow 
shows same asymmetry seen in A. D, Magnification view of the cancer-containing area in C. Arrow 
indicates the same asymmetry seen in B. Because of the high likelihood of cancer predicted by the 
AI system, the lesion is prompted even when missed by the evaluating radiologist. Consequently, 
this cancer would likely have been detected earlier if an AI system had been used in the original 
reading. Note that the mammograms were obtained with machines from different vendors and look 
different mainly due to the applied postprocessing. (Image courtesy of Nico Karssemeijer, PhD.)
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reporting radiologist and, hence, expedite the reading of normal 
cases while allowing more time for potential cancer-containing 
cases. Rodriguez-Ruiz et al (85) recently found that an AI case 
score, a metric ranging from 1 to 10 that describes the likelihood 
of malignancy, was significantly associated with a reduction in 
reading time. Readers reduced their reading time in cases with a 
low score, leading to a potential reduction of overall reading time 
of 4.5% for a screening data set (albeit the general reading times 
in that study were longer than those normally needed in clinical 
practice). Alternative approaches that classify mammograms as 
negative by AI systems alone, without human input, have been 
proposed. These approaches would have a much larger effect on 
workflow efficiency.

A human-like AI system could, for example, be used as a 
fully independent second reader of screening mammograms. 
A second human reader would only arbitrate discrepancies 
between the first human reader and the AI system, thus halv-
ing the workload for any screening program in which double 
reading is standard. While tempting, it should be noted that 
the actual effect of such an approach on recall policy and posi-
tive predictive values for recall and biopsy is still unknown. 
Following earlier studies with conventional CAD systems, a 
single reading plus CAD approach was not adopted due to a 
slightly lower sensitivity and higher recall rate (65). The in-
creased performance of the AI system might not completely 
overcome this, as it is also dependent on the behavior of the 
human reader who eventually determines whether the finding 
is suspicious and who will recall the patient for additional im-
aging. The idea to dismiss mammograms that are categorized as 
very likely normal without any human reader interpretation is 
the logical next step. Such preselection of normal cases may be 
based on case-based AI scores as described earlier but will likely 

sets of annotated data used to train complex neural networks 
with many layers have shown a decrease in the number of false-
positive prompts and a reduction in recall rates by 10%–20%  
(Fig 6). Another important feature of the AI systems is the feed-
back provided when, according to the system, the likelihood 
of cancer is very low. This may increase the confidence of the 

Figure 4: Examples of saliency maps for screening mammography examination classification in 67-year-old asymptomatic woman. Images are 
left craniocaudal mammograms without (a) and with (b, c) overlying heat maps. There is a 3.6-cm irregular round dense mass (black arrow in a) in 
upper central left breast and a 5-mm cluster of calcifications (white arrow in a) in medial inferior left breast. From a probability of malignancy score 
of 0–1, the maximum value of the benign green heat map is 0.71. The maximum value of the malignant red heat map is 0.881. Both values indicate 
that the classifier predicts with high certainly that the mass is malignant and the calcifications are benign. At pathologic examination, the mass was an 
invasive ductal carcinoma and the calcifications were benign fat necrosis. (Image courtesy of Nan Wu, PhD.)

Figure 5: Receiver operating characteristic curves for radiologists reading 
mammograms unaided and stand-alone artificial intelligence (AI) computer system 
(Transpara; Screenpoint, Nijmegen, the Netherlands). Circles indicate the radiolo-
gists’ operating points at Breast Imaging Reporting and Data System category 3 
thresholds. (Reprinted, with permission, from reference 82.)
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examinations. Conven-
tional CAD systems may 
standardize the reporting 
of breast density by us-
ing either the projected 
white areas from the 
processed mammograms 
directly or a volumet-
ric calculation of the 
amount of fibroglandu-
lar tissue from raw mam-
mograms (94,95). Sev-
eral studies showed that 
automated quantitative 
assessment of breast den-
sity is more robust than 
human evaluations, es-
pecially when evaluated 
over time (96,97).

However, the predic-
tion of risk for the devel-
opment of breast cancer 
with use of automated 
measures seems to be 
inferior to that of visual 
assessment (95,98,99). 
This might have to do 
with the subconscious in-
corporation of fibroglan-
dular tissue distribution 
and texture features by 
radiologists. Automated 
risk prediction becomes 
better when incorpo-
rating texture features 
(100–103), and the inte-
gration of texture features 
with deep learning may 
strongly improve their 

discriminatory power (104). Several studies have shown that 
deep learning–based classification of fibroglandular density cat-
egories is closer to radiologist observations than classic feature-
based techniques (88,105–107). Moreover, Lehman et al (89) 
showed that the vast majority (94%) of deep learning–based 
density classifications is accepted by reporting radiologists. Al-
though the predictive value of AI-based density estimations still 
must be assessed in modeling studies (108), it is anticipated that 
the risk assessment with such density estimations, when trained 
on sufficiently large databases, is similar to that of radiologists.

Applying Deep Learning Algorithms to DBT
The issue of image normalization is even more important in 
DBT than in mammography. DBT images acquired with ma-
chines from different vendors have differences in angular range, 
acquisition technique, pixel binning, and reconstruction tech-
nique (14). Therefore, the difference in the appearance of the 
normal breast parenchyma with DBT images from different 

result in dismissal of a small fraction of cancers by the com-
puter alone. Ethical considerations and cost-effectiveness will 
determine whether such an approach might be viable in the 
future. Table 2 lists the differences and potential use of deep 
learning–based AI systems compared with conventional CAD 
systems in the detection of cancer. Table 3 provides an over-
view of these CNN-based AI systems and their current clinical 
applications.

Quantitative and Reproducible Assessment of Breast Density 
to Stratify Risk for Breast Cancer
Another important task for CAD systems is to provide an ac-
curate and reproducible assessment of mammographic breast 
density (88–91). Mammographic breast density may mask 
an underlying cancer. In addition, dense breast tissue is an 
independent risk factor for the development of breast cancer 
(92,93). Consequently, breast density assessment is commonly 
used for stratification of women for supplemental screening 

Figure 6: Bilateral mediolateral oblique mammograms in two women with breast cancer (arrow). Mammograms were obtained, 
A, C, without and, B, D, with the output of a convolutional neural network–based cancer detection system. The likelihood of cancer 
presence is given as a heat map. A, B, Images in one patient with a relatively obvious spiculated mass found to be a grade 2 inva-
sive ductal breast cancer. C, D, Images in another patient with a much more subtle asymmetry found to be an invasive lobular carci-
noma. (Images courtesy of Beomseok Suh, PhD.)
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applications start at the level of scatter correction and denois-
ing to reduce the radiation dose (113,114). Basic reconstruc-
tion of a DBT volume is based on (filtered) back-projection, a 
technique that is commonly used for CT. However, studies have 
shown that more sophisticated iterative techniques considerably 
improve image quality (115–117), which also improves subse-
quent automated cancer detection with CNNs (117). It seems 
that deep learning–based techniques may further optimize the 
quality of the reconstructed images (118,119). In the future, 
synthetic mammograms will be generated from the tomosynthe-
sis data by using deep learning techniques, as current synthetic 
mammograms may, at best, be comparable to full-field digital 
mammograms (120,121). The use of machine learning to gen-
erate synthetic mammograms may enhance suspicious findings 
in the DBT volume so that they become more conspicuous. In 
addition, they may even remove normal tissue that may mask 
eventual relevant findings. The use of a multiplanar reconstruc-
tion fitted through the most suspicious lesions detected by a con-
ventional CAD system in a DBT examination improved reader 
performance compared to that with full-field digital mammog-
raphy (122). A commercially available synthetic mammography 
system on which lesions detected in the DBT volume are en-
hanced has also been evaluated (Fig 7). In an initial reader study, 
readers performed equally well with and without CAD, but the 
average reduction in reading time was 23.5% (123). In addition, 
James et al (124) found that radiologist performance increased 
substantially when they compared CAD-enhanced synthetic 
mammograms with conventional synthetic mammograms.

Radiomics
Radiomics, an expansion of CAD, is defined as the conversion 
of images to minable data by means of digital decoding of ra-
diologic images into quantitative features (125). In radiomics 
analysis, the tumor is segmented from its background and vari-
ous tumor features (eg, intensity, shape, size or volume, and 
texture patterns) are extracted. Once large high-quality and 
well-curated data sets are available, they can be used for data 
mining, which refers to the process of discovering patterns in 

vendors is much larger than that with full-field digital mam-
mography. This is an important consideration for training deep 
learning models. In addition, available training data sets for 
DBT are much smaller, which implies that other techniques that 
work with a relative paucity of data must be used to improve 
performance. To manage this issue, transfer learning can be ap-
plied. Transfer learning is based on the assumption that if two 
learning tasks are similar, a network trained to solve a task with 
more data available can be reused for a task with fewer train-
ing data available (109). Most commonly, transfer learning is 
implemented by copying the parameters of the network trained 
with a lot of data into the network that is intended to solve the 
task for which fewer data are available. Subsequently, the sec-
ond network is only trained for a very short time to prevent 
overfitting. In the context of breast imaging, this technique 
was, for example, used for classifying breast density by using 
a network originally designed for performing Breast Imaging 
Reporting and Data System classification (88). Current cancer 
detection systems for DBT are largely based on adaptations of 
networks originally trained on mammograms to allow the im-
age patterns learned from mammography to be transferred to 
the analysis of DBT images. However, the depth dimension in 
tomosynthesis has a poor spatial resolution and therefore only 
a limited influence on the detection accuracy per anatomic slice  
(110). It is therefore to be expected that the performance of AI 
for DBT is somewhat behind the performance for mammogra-
phy (110).

Current CNN-based systems for DBT already improve upon 
features that are manually identified and labeled by humans 
(111,112). With larger training data sets, these algorithms will 
improve and become indispensable in the evaluation of DBT 
because the potential gain in workflow efficiencies will be much 
higher due to the longer reading times of DBT examinations. 
Proposed detection systems largely work with conventional 
prompts placed on the synthetic mammogram. These prompts 
guide the reader to the most suspicious section in the DBT vol-
ume when clicked. More advanced integration of AI with DBT 
is expected, and potential applications are listed in Table 4. These 

Table 2: Potential Use of CAD for Cancer Diagnosis

Task Conventional CAD AI-based CAD Advantages of AI
Prevention of overlook 

errors
Yes, prompts potential  

abnormalities
Yes, provides prompts or heat 

map to show most suspicious 
abnormalities

Fewer false-positive findings

Interactive decision  
support

Possible, but not commonly  
used

Possible Provides feedback on areas not deemed 
abnormal enough to prompt

Determination of cancer 
likelihood

No, only lesion-based  
likelihoods of malignancy  
are provided

Yes, case-based scores show  
likelihood of cancer presence

Confirmation of normality may increase 
confidence and speed of evaluation

Independent second  
reading

No, CAD findings lead to 
improved detection but also 
increased recall

Potentially, as sensitivity is on  
par with that of radiologists

Strong reduction of workload when double 
reading is standard, but clinical validation 
is still required; may increase recall

Dismissal of normal  
cases (independent  
first reading)

No, absence of malignancy is 
unreliable

Potentially, as sensitivity is on  
par with that of radiologists

May lead to dismissal of some human- 
detected cancers, potential is dependent 
on cost-benefit evaluation

Note.— AI = artificial intelligence, CAD = computer-aided diagnosis.
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Table 3: Summary of Recent Results for Digital Mammography and DBT and AI Applications

Result and Study Algorithm Amount of Training Clinical Results

Deep learning–based AI systems 
may achieve near-human 
performance

 Kooi et al, 2017 (84) CNN-based AI program shows  
equal performance for mass  
detection on a patch level

Training set of 39 872 images from 6433 
women. Trained on 334 752 positive 
and 853 800 negative patches. Valida-
tion on 4218 images from 710 women. 
Test set of 18 182 images of 2064 
women

Accuracy was 0.93 on test set. 
Model had equal performance 
(0.85) to that of radiologists 
on a subset of patches for mass 
detection

 Geras et al, 2017 (71) Multiview deep CNN Approximately 200 000 breast  
cancer screening examinations 
(1 000 000 images)

Increasing the amount of training 
cases to close to 1 million still 
improved the quality of a 
CNN-based classifier. Down-
scaling the images led to a loss 
of accuracy

 Ribli et al, 2018 (69) Faster R-CNN; the base  
CNN was a VGG16 network 
(Oxford, England),  
which is a 16-layer-deep CNN

The public Digital Database for Screening 
Mammography contains 2620 digitized 
screen-film screening mammographic 
examinations; Semmelweis Univer-
sity (Budapest, Hungary) contains 847 
FFDM images from 214 examinations; 
INbreast data set contains 115 FFDM 
cases

By using the public INbreast 
database, the model achieved 
an AUC of 0.95. Also, this 
approach achieved 2nd place 
in the Digital Mammogra-
phy Dialogue for Reverse 
Engineering Assessments and 
Methods, or DREAM, Chal-
lenge, with an AUC of 0.85

 Kim et al, 2018 (83) CNN-based AI system; deep  
CNN specialized for images

Digital mammograms from five institu-
tions (4339 cancer cases and 24 768 
normal cases) were included

Sensitivity of 75%, specificity of 
90%, and accuracy of 90% on 
a case level

 Rodriguez-Ruiz et al,  
  2019 (82)

Deep learning CNN, feature  
classifiers, and image analysis  
algorithms to detect  
calcifications (20,21) and  
soft-tissue lesions

Trained, validated, and tested on a private 
database with more than  
9000 cancer cases and 180 000 normal 
cases

Model achieved noninferior per-
formance compared with 101 
radiologists in a series  
of data sets from various  
vendors with varying  
abnormalities, each read by 
multiple radiologists

Quality and efficiency of radiolo-
gist’s readings may improve 
with use of deep learning–
based systems for mammogra-
phy and DBT

 Wu et al, 2017 (88) Deep learning–based density  
classification

Approximately 200 000 breast cancer 
screening examinations (1 000 000 
images)

CNN achieved agreement with 
radiologist’s interpretation on 
the same level as that of radi-
ologists with themselves

 Lehman et al, 2018 (89) Deep learning–based density  
classification; deep CNN 
(ResNet-18) with  
PyTorch (2018, version 0.31;  
pytorch.org) 

The model was trained on 41 479 mam-
mograms obtained in 27 684 women 
and tested on a held-out test set of 
8677 mammograms in 5741 women. 
Then, the algorithm was implemented 
in clinical practice on 10 763 mam-
mograms

The system provided density  
assessment in good agreement 
with radiologist’s interpreta-
tion, and its score was ac-
cepted in 94% of cases

 Rodriguez-Ruiz et al,  
  2019 (85)

CNN-based CAD system Trained, validated, and tested on a private 
database with more than  
9000 cancer cases and 180 000 normal 
cases

Radiologists improved detection 
performance in a reader study 
of 240 cases (100 malignant) 
when using the model for 
reading mammograms (AUC 
= 0.89 vs 0.87, P , .01)

Table 3 (continues)
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Table 4: AI Solutions for Issues in DBT

Issues with DBT Potential AI Solution
Radiation Deep learning–based reconstruction of synthetic images may lead to a reduction in  

radiation dose
More images Generation of AI-enhanced synthetic mammograms optimized for a specific task
Calcifications not always clearly visible Enhance the conspicuity of calcifications
Longer reading times compared with digital  

mammography
Confirmation of absence of lesions; help localize a finding detected on multiple images

Reduces the effect of tissue superimposition 
and detects more benign and malignant 
abnormalities

Improved lesion classification with the three-dimensional information available in the DBT 
volume

Limited sensitivity in dense breast tissue Deep learning algorithms may remove normal fibroglandular tissue from composite  
images to “see through” the dense breast tissue

Note.—AI = artificial intelligence, DBT = digital breast tomosynthesis.

Table 3 (continued): Summary of Recent Results for Digital Mammography and DBT and AI Applications

Result and Study Algorithm Amount of Training Clinical Results

Deep learning–based AI systems 
may achieve near-human 
performance

 Wu et al, 2019 (90) CNN-based breast cancer  
screening classifier (code and  
parameters available at  
https://github.com/nyukat/ 
breast_cancer_classifier)

Approximately 200 000 breast  
cancer screening examinations 
(1 000 000 images)

Model achieved superior perfor-
mance to 14 breast radiologists 
in terms of AUC; a hybrid 
model, averaging probability 
of malignancy predicted by a 
radiologist with a prediction of 
our neural network, was more 
accurate than either of the 
two separately both in terms 
of AUC and precision-recall 
AUC

 Conant et al, 2019 (91) Deep learning–based system,  
provides outlines of detected  
soft tissue and calcific lesions  
in the DBT sections and  
calibrated lesion-level and  
case-level scores

12 000 cases, including 4000  
biopsy-proven cancers;  
reader study

Use of AI for DBT interpretation 
improved performance (AUC 
= 0.85 vs 0.80, P , .01) while 
reducing reading time by 
52.7%

Note.—AI = artificial intelligence, AUC = area under the receiver operating characteristic curve, CAD = computer-aided diagnosis, CNN = 
convolutional neural network, DBT = digital breast tomosynthesis, FFDM = full-field digital mammography.

large data sets. This process can use AI, machine learning, or 
statistical approaches (126). The goal of quantitative radiomics 
is to yield predictive image-based phenotypes of breast cancer 
with the aim of better classifying the tumor to improve treat-
ment and prognosis, in line with precision medicine. Further-
more, radiogenomics (ie, imaging genomics) aims to find asso-
ciations between imaging data and clinical data, molecular data, 
genomic data, and outcome data (127). Most radiomic studies 
extract data from breast MRI to determine the cancer pheno-
type and, in particular, heterogeneity (128,129). However, sev-
eral studies have shown correlations between mammographic 
characteristics and biologic profiles of breast cancers (130,131). 
Consequently, mammographic data may be used to gain insight 
into breast cancer phenotypes. In a recent study, Shi et al (132) 

showed that a CNN detected occult invasion in patients with 
ductal carcinoma in situ, achieving an area under the receiver 
operating characteristic curve of 0.70 in a very small database of 
digital mammograms. This is slightly better than that achieved 
by Li et al (133), who used more conventional radiomics feature 
extraction techniques. Another recent study using such feature 
extraction (134) showed that parenchymal texture features of 
the contralateral breast may be used to improve the differen-
tiation between benign and malignant lesions. Using a similar 
approach, Yang et al (135) achieved a classification accuracy of 
84% in predicting lymph node involvement from mammo-
graphic characteristics of the primary tumor. Another recent 
study (136) reported that radiomics features of the parenchyma 
from DBT in women with occult breast cancer in dense breasts 
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As AI becomes an important tool for radiologists, it will be-
come fully integrated in the different imaging modalities (137). 
To be efficient in this role, a deep neural network must be able to 
explain its decision in a form that is comprehensible to humans. 
Clinical implementation of AI systems is limited by the machine’s 
current inability to explain its decisions and actions to human us-
ers. This must be addressed. Beyond improving the understanding 
of the predictions made by the neural networks, indicating im-
portant parts of the mammogram could be used for planning and 
analysis of subsequent imaging examinations such as US or MRI.

Conclusions
The development and implementation of artificial intelligence 
(AI) for mammography has been ongoing for several decades. 
Because of the advances in deep learning, the speed of imple-
mentation and the clinical value of AI have markedly increased. 
AI will play an important role for mammography and digital 
breast tomosynthesis (DBT) in all steps—from image genera-
tion and denoising to risk prediction, cancer detection, and, ul-
timately, therapy selection and outcome prediction. Compared 
with classic computer-aided detection systems based on manu-
ally crafted features, deep learning–based systems have a bet-
ter performance—approaching that of radiologists for specific 
tasks. Still, there are also residual shortcomings of the novel AI 
solutions. These include the need for very large and well-cu-
rated data sets to train and validate algorithms and a necessity 
to devise continuous quality control systems as the algorithms 
are versatile and may evolve over time when more data become 
available. External validation studies are urgently needed. Al-
though many recent studies are promising and report strong 
results, we must look at them critically and recognize their 
limitations in several aspects. First, almost all works only re-

differ from those in women without cancer, thus yielding the 
possibility to predict breast cancer risk estimation. It may be 
possible to further optimize therapy by using automated extrac-
tion of mammographic features of cancer, although it remains 
to be seen whether these features are complementary to clinical 
and histopathologic information alone.

Future Directions
A shortcoming of currently used neural network models is that 
they only evaluate the most recent examination. Although it is 
possible to make a reasonably good assessment this way, it is 
evident that this does not take into account all the information 
a radiologist would rely on to evaluate a difficult examination. 
Previous mammograms, and images obtained with different 
imaging modalities, can be exploited to improve the quality 
of prediction of neural networks. A network that could learn 
by using these data would be especially useful in diagnosing 
very early stages of cancer, as even subtle changes in the breast 
tissue are difficult for a radiologist to perceive. In addition, 
nonimaging-based patient characteristics, such as demographic 
information, history of cancer, and genetic information, may 
be integrated into the model. Given a sufficiently large data set, 
neural networks could use these pieces of information in con-
junction with the image data to identify women at high risk of 
cancer. Similarly, in patients with breast cancer, AI may allow 
for highly personalized therapy, commonly referred to as pre-
cision medicine, using deep learning–based radiomics assess-
ment. Data on the effect of AI systems on clinical performance 
and patient outcome are limited. Studies evaluating such end 
points are vital for the positioning of these techniques in health 
care, especially because policy-level issues such as reimburse-
ment and liability have yet to be defined.

Figure 7: Examples of artificial intelligence (AI)–enhanced synthetic mammograms. A, Normal synthetic craniocaudal mammogram of right 
breast. B, AI-enhanced craniocaudal acquisition clearly shows an invasive ductal carcinoma (arrow) that is hardly visible in A. C, Normal synthetic 
mediolateral oblique mammogram and, D, AI-enhanced version. The invasive ductal carcinoma in D (arrow) is hardly visible in C. (Image courtesy of 
Corinne Balleyguier, PhD.)
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port the area under the receiver operating characteristic curve 
in detecting malignancy. Although the area under the receiver 
operating characteristic curve is the most widely applied metric 
for measuring a classifier’s performance, it is sensitive to class 
distribution. Studies that use test data of different class distri-
butions should not be compared by using the area under the 
receiver operating characteristic curve. Second, very few studies 
explain the data distribution used for training and testing in 
enough detail. Little is known about how accurate these differ-
ent networks are for different types of findings. We also do not 
know how well different networks would work when applied 
to data acquired with different machines or to data acquired for 
a population of different demographic characteristics. Finally, 
few studies have been performed to evaluate how the advances 
in AI can be implemented in a manner that maximizes their 
clinical impact, which must be the ultimate target. Even with 
these limitations, it is expected that AI will play a major role in 
the evaluation of mammography and DBT in the near future, 
particularly in the screening setting.
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